International Journal of Engineering, Science and Mathematics

Vol. 8Issue 9, September 2019,

ISSN: 2320-0294 Impact Factor: 6.765

Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A.

WEYL'S THEOREM FOR ALGEBRAICALLY $Q(A(k^*),m)$ OPERATORS

D.KIRUTHIKA* AND P.MAHESWARI NAIK

ABSTRACT: In this piece of writing, we show that Weyl's theorem and property (ω) holds for algebraically $Q(A(k^*), m)$ operator.

KEYWORDS: SVEP, Isoloid, Weyl's theorem, $O(A(k^*), m)$

1. INTRODUCTION AND PRELIMINARIES

Let H be an infinite dimensional Hilbert space L(H) and denote the algebra of all bounded linear operator acting on H. Class A(k) and absolute k-paranormal operator are studied detaille in [8]. Further as a generalization of Class A(k), class $A(k^*)$ operator with $k \succ 0$ were studied in [6].

DEFINITION 1.1

Let $k \succ 0$ and m be a non negative integer. An operator $J \in L(H)$ is said to be an m - quasi class $A(k^*)$ operator (abbreviate as $Q(A(k^*), m)$) if $J^{*m} \Big(J^* \big| J \big|^{2k} J \Big)^{\frac{1}{k+1}} J^m \ge J^{*m} \big| J^* \big|^2 J^m \ .$

Lemma 1.2. [9]

Let 0 < k < 1 and k be a non negative integer. If $J \in Q(A(k^*), m)$ operator and $(J - \mu)x = 0$ with $\mu \neq 0$, then $(J - \mu)^*x = 0$.

Lemma 1.3

Let J be invertible and quasi nilpotent algebraically $Q(A(k^*),m)$ operator. Then J is nilpotent.

Proof: Suppose that p(J) is $Q(A(k^*),m)$ operator for some non-constant polynomial p. Since $\sigma(p(J)) = p(\sigma(J))$, the operator p(J) - p(0) is quasi-nilpotent, from Lemma 1.2 we have $CJ^m(J-\lambda_1)(J-\lambda_2)$ $(J-\lambda_n) \equiv p(J) - p(0) = 0$ where $m \ge 1$. since $J - \lambda_i$ is invertible for every $\lambda_i \ne 0$ and so $J^m = 0$.

Lemma 1.4

Let J be an algebraically $Q(A(k^*), m)$ operator. Then J is isoloid.

Proof: Let $\lambda \in iso(\sigma(J))$ and let $E_{\lambda} = \frac{1}{2\pi i} \int_{\partial D\lambda} (Z - J)^{-1} dZ$ be the associated Riesz idempotent, where D_{λ} is a closed disc centered at λ which contains no other point of $\sigma(J)$. We can represent J as the direct sum, $J = \begin{pmatrix} J_1 & 0 \\ 0 & J_2 \end{pmatrix}$ where $\sigma(J_1) = \lambda$ and $\sigma(J_2) = \sigma(J) \setminus \lambda$. Since J is algebraically $Q(A(k^*), m)$ operator p(J) is a $Q(A(k^*), m)$ operator for some non-constant polynomial p. Since $\sigma(J_1) = \lambda$, we must have $\sigma(p(J_1)) = p(\sigma(J_1)) = p(\lambda)$. Therefore $p(J_1) = p(\lambda)$ is quasi-nilpotent.

Since $p(J_1)$ is $Q(A(k^*),m)$ operator, it follows from Lemma 1.2, that $p(J_1) = p(\lambda) = 0$. Put $q(z) = p(z) - p(\lambda)$. Then $q(J_1) = 0$ and hence J_1 is algebraically $Q(A(k^*),m)$ operator. Since $J_1 - \lambda$ is quasi-nilpotent and algebraically $Q(A(k^*),m)$ operator, it follows from Lemma 1.3, then $J_1 - \lambda$ is nilpotent. Therefore $\lambda \in \pi_0(J_1)$ and hence $\lambda \in \pi_0(J_1)$. This prove that J is isoloid.

Lemma 1.5

Let J be an algebraically $Q(A(k^*), m)$ operator. Then J is polaroid.

Theorem 1.6. [9]

Let J belongs to the $Q(A(k^*),m)$ operator. Then J is of finite ascent.

Corollary 1.7. [9]

Let J belongs to the $Q(A(k^*), m)$ operator. Then J has SVEP.

Theorem 1.8

Let J be an algebraically $Q(A(k^*), m)$ operator. Then J has SVEP.

Proof: First we show that if J is $Q(A(k^*),m)$ operator, then J has SVEP. Suppose that J is $Q(A(k^*),m)$ operator. If $\pi_0(J) = \phi$, then clearly J has SVEP. Suppose that $\pi_0(J) \neq \phi$, Let $\Delta(J) = \lambda \in \pi_0(J) : N(J - \lambda) \subseteq N(J^* - \overline{\lambda})$. Since J is $Q(A(k^*),m)$ operator and $\pi_0(J) \neq \phi$, $\Delta(J) \neq \phi$. Let M be the closed linear span of the subspaces $N(J - \lambda)$ with $\lambda \in \Delta(J)$. Then M reduces J and we can write J as $J_1 \oplus J_2$ on

 $H=M\oplus M^\perp$. Clearly J_1 is normal and $\pi_0(J_2)=\phi$. Since J_1 and J_2 have both SVEP, J has SVEP. Suppose that J is algebraically $Q(A(k^*),m)$ operator. Then p(J) is $Q(A(k^*),m)$ operator for some non constant polynomial p. Since p(J) has SVEP, it follows from [12, Theorem 3.3.9] that J has SVEP.

2. WEYL'S THEOREM FOR ALGEBRAICALLY $Q(A(k^*),m)$ OPERATORS

Theorem 2.1.Let J be an algebraically $Q(A(k^*),m)$ operator. Then Weyl's theorem holds for J.

Proof: Suppose that $\lambda \in \sigma(J) \setminus w(J)$. Then $J - \lambda$ is Weyl and not invertible, we claim that $\lambda \in \partial \sigma(J)$. Assume that λ is an interior point of $\sigma(J)$. Then there exist a neighbourhood U of λ , such that $\dim N(J - \mu) > 0$ for all $\mu \in u$. It follows from [7,Theorem 10] that J does not have single valued extension property[SVEP]. On the other hand, since p(J) is $Q(A(k^*),m)$ operator for some non constant polynomial p, it follows from Corollary 1.7. That J has SVEP. It is a contradiction, Therefore $\lambda \in \sigma(J) \setminus w(J)$ and it follows from the punctured neighbourhood theorem that $\lambda \in \pi_{00}(J)$.

Conversely suppose that $\lambda \in \pi_{00}(J)$. Using the Riesz idempotent $E_{\lambda} = \frac{1}{2\pi i} \int_{\partial D\lambda} (Z-J)^{-1} \, dZ \quad \text{for } \lambda \text{ , we can represent J} \text{ as the direct sum } J = \begin{pmatrix} J_1 & 0 \\ 0 & J_2 \end{pmatrix}$

where $\sigma(J) = \lambda$ and $\sigma(J_2) = \sigma(J) \setminus \lambda$.

Now we consider two cases

case(i) $\lambda = 0$

Then J_1 is algebraically $Q(A(k^*),m)$ operator and quasi nilpotent. It follows from Lemma 1.3, that J_1 is nilpotent. We claim that $\dim R(E) < \infty$. For if $N(J_1)$ is infinite dimensional, then 0 does not belongs to $\pi_{00}(J)$. It is contradiction. Therefore J_1 is an operator on the finite dimensional space R(E). So it follows that J_1 is Weyl. But since J_2 is invertible, we can conclude that J is Weyl, therefore $0 \in \sigma(J) \setminus w(J)$. case(ii)

 $\lambda \neq 0$. Then by Lemma 1.4, $J_1 - \lambda$ is nilpotent. Since $\lambda \in \pi_{00}(J)$, $J_1 - \lambda$ is an operator on the finite dimensional space R(E). So $J_1 - \lambda$ is Weyl. Since $J_2 - \lambda$ is invertible $J - \lambda$ is Weyl.

By case(i) and case(ii), Weyl's theorem holds for J.

This complete the proof.

Theorem 2.2

Let J be an algebraically $Q(A(k^*), m)$ operator. Then Weyl's theorem holds for f(J) for every $f \in H(\sigma(J))$.

Proof: Let $f \in H(\sigma(J))$. Since $w(f(J)) \subseteq f(w(J))$, it suffices to show that $f(w(J)) \subseteq w(f(J))$. Suppose $\lambda \notin w(f(J))$, then $f(J) - \lambda$ is Weyl and

$$f(J) - \lambda = C(J - \alpha_1)(J - \alpha_2) \dots (J - \alpha_n)g(J) \dots (I)$$

where $C, \alpha_1, \alpha_2, \ldots, \alpha_n \in C$ and g(J) is invertible. Since the operators in the right side (I) commute, every $J - \alpha_i$ is fredholm. Since J is algebraically $Q(A(k^*), m)$ operator. J has SVEP by Lemma 1.7. It follows from [1,Theorem 2.6] that $ind(J - \alpha_i) \leq 0$ for each $i=1,2,3,\ldots,n$. Therefore $\lambda \notin f(w(J))$ and hence $f(w(J)) \subseteq w(f(J))$.

Now by [13] , that is J is isoloid, then $f(\sigma(J) \setminus \pi_{00}(J)) = \sigma(f(J)) \setminus \pi_{00}(J)$ for every $f \in H(\sigma(J))$.

Since J is isoloid by Lemma 1.4 and Weyl's theorem holds for J by Theorem 2.1 $\sigma(f(J) \setminus \pi_{00}(J)) = f(\sigma(J) \setminus \pi_{00}(J)) = f(w(J)) = w(f(J)) \quad \text{which implies that Weyl's theorem holds for } f(J) \text{ . This complete the proof.}$

Theorem 2.3

Let J be an algebraically $Q(A(k^*),m)$ operator. Then generalized Weyl's theorem holds for J.

Proof: Assume that $\lambda \in \sigma(J) \setminus \sigma_{Bw}(J)$. Then $J - \lambda I$ is B- Weyl and not invertible. We claim that $\lambda \in \partial \sigma(J)$. Assume to the contrary that λ is an interior point of $\sigma(J)$. Then there exists a neighbor hood U of λ such that $\dim(J - \mu) > 0$ for all $\mu \in U$. It follows from [7, Theorem 10] that J does not have SVEP. On the other hand since p(J) is $Q(A(k^*), m)$ operator for non-constant polynomial p. It follows from Corollary 1.7 that p(J) has SVEP. Hence by [12, Theorem 3.3.9] J has SVEP, a contradiction.

Therefore $\lambda \in \partial \sigma(J)$. Conversely, assume that $\lambda \in E(J)$, then λ is isolated in $\sigma(J)$. From [10, Theorem 7.1], we have $X = M \oplus N$, where M, N are closed subspaces of X, $U = (J - \lambda I)|_N$ is an invertible operator and $V = (A - \lambda I)|_N$ is a quasi-nilpotent operator. Since J is algebraically $Q(A(k^*), m)$ operator, V is also algebraically $Q(A(k^*), m)$ operator from Lemma 1.3, V is nilpotent. Therefore $J - \lambda I$ is Drazin invertible [5, Proposition 19] and [Corollary 2.2]. By [4 Lemma 4.1] $J - \lambda I$ is a B - fredholm operator of index 0.

Theorem .2.4

Assume that J or J^* is algebraically $Q(A(k^*),m)$. Then $\sigma_{ea}(f(J))=f(\sigma_{ea}(J))$ for every $f\in H(\sigma(J))$

Proof: Let $f \in H(\sigma(J))$. It suffices to that $f(\sigma_{ea}(J)) \subseteq \sigma_{ea}(f(J))$ for every $f \in H(\sigma(J))$. Suppose that $\lambda \in \sigma_{ea}(f(J))$. Then

$$f(J) - \lambda = C(J - \alpha_1)(J - \alpha_2)...(J - \alpha_n)g(J)...(I)$$

where $C, \alpha_1, \alpha_2, \ldots, \alpha_n \in C$ and g(J) is invertible. If J is algebraically $Q(A(k^*), m)$ operator, it follows from [1, Theorem 2.6] that $i(J-\alpha_i) \leq 0$ for each $i=1,2,3,\ldots,n$. Therefore λ does not belongs to $f(\sigma_{eq}(J))$, and hence $\sigma_{eq}(f(J)) = f(\sigma_{eq}(J))$.

Suppose that J^* is algebraically $Q(A(k^*),m)$ then J^* is SVEP. Since $i(J-\alpha_i) \leq 0$ for each i=1,2,3...n. $(J-\alpha_i)$ is Weyl for each i=1,2,3,...n. Hence $\lambda \notin f(\sigma_{ea}(J))$, and so $\sigma_{ea}(f(J)) = f(\sigma_{ea}(J))$.

This complete the proof.

3. Property (ω)

Definition 3.1

A bounded operator $J \in L(H)$ is said to satisfy propert ω if $E_0(J) = \Delta^a(J) = \sigma_a(J) \setminus \sigma_{SF^-}(J).$

As observed in [3], we have either of a-Weyls theorem or property (ω) for $J \Rightarrow$ Weyl's theorem holds for J.

Lemma 3.2. [3]

Suppose that $J \in L(H)$.

(i) If J^* has the SVEP then $\sigma_{SF_{+}^{-}}(J) = \sigma_b(J)$.

(ii) If J has the SVEP then $\sigma_{\mathit{SF}_{-}^{-}}(J) = \sigma_{\mathit{b}}(J)$.

Theorem 3.3.

Let $J \in L(H)$.

- (i) If J^* is algebraically $Q(A(k^*), m)$ then property (ω) holds for J.
- (ii) If J is algebraically $Q(A(k^*), m)$ then property (ω) holds for J^* .

Proof: (i) Since J^* is algebraically of $Q(A(k^*),m)$, then J^* is the SVEP and J is polaroid by Lemma 1.5 because J is polaroid if and only if J^* is polaroid. Consequently $\sigma(J) = \sigma_a(J)$. If $iso\sigma(J) = \phi$, then $E_0(J) = \phi$. We show that $\sigma_a(J) \setminus \sigma_{SF_+^-}(J)$ is empty. By Lemma 3.2 we have $\sigma_a(J) \setminus \sigma_{SF_+^-}(J) = \sigma(J) \setminus \sigma_b(J)$ and the last set is empty, since $\sigma(J)$ has no isolated points. Therefore, J satisfies property (ω) .

Consider the other case, $iso \sigma(J) \neq \phi$. Suppose that $\lambda \in E_0(J)$. Then λ is isolated in $\sigma(J)$ and hence, by the polaroid condition, λ is a pole of the resolvent of J, i.e. $a(J-\lambda)=d(J-\lambda)<\infty$. By assumption $\alpha(J-\lambda)=<\infty$, so by [2,Theorem 3.1] $\beta(J-\lambda)=<\infty$, and hence $(J-\lambda)$ is a Fredholm operator. Therefore, by Lemma 3.2 $\lambda \in \sigma(J) \setminus \sigma_b(J) = \sigma_a(J) \setminus \sigma_{SF_+}(J)$. Conversely, if $\lambda \in \sigma_a(J) \setminus \sigma_{SF_+}(J) = \sigma(J) \setminus \sigma_b(J)$ then λ is an isolated point of $\sigma(J)$. Clearly, $0<\alpha(J-\lambda)<\infty$, so $\lambda \in E_0(J)$ and hence J satisfies property (ω) .

(ii) First note that since J has SVEP then $\sigma_a(J^*)=\{\lambda\in C: J-\lambda is \ not \ onto\}=\sigma(J)=\sigma(J^*).$ Suppose first that $iso\sigma(J)=iso\sigma(J^*)$. Then $E_0(J^*)=\phi$. By Lemma 3.2 we have $\sigma_a(J)\setminus\sigma_{SF_+^-}(J)=\sigma(J)\setminus\sigma_b(J)=\phi$ so J^* satisfies property (ω) .

Suppose that $iso\sigma(J) \neq \phi$, ; and let $\lambda \in E_0(J^*)$. Then λ is isolated in $\sigma(J) = \sigma(J^*)$, hence a pole of the resolvent of J^* , since J^* is polaroid by Lemma 1.5. By assumption $\alpha(J^* - \overline{\lambda}) < \infty$ and since the ascent and the descent of $J^* - \overline{\lambda}$ are both finite it then follows by [2, Theorem 3.1 that $\alpha(J - \lambda) = \beta(J - \lambda) < \infty$, so $J^* - \overline{\lambda}$ is Browder and hence also $J - \lambda$ Browder. Therefore, $\lambda \in \sigma(J) \setminus \sigma_b(J)$ and by Lemma 3.2 it then follows that $\lambda \in \sigma_a(J) \setminus \sigma_{SF^-}(J)$.

Conversely, if $\lambda \in \sigma_a(J) \setminus \sigma_{SF_+^-}(J) = \sigma(J) \setminus \sigma_b(J)$, then λ is an isolated point of the spectrum of $\sigma(J) = \sigma(J^*)$. Hence $J - \lambda$ is Browder, or equivalently $J^* - \overline{\lambda}$ is Browder. Since $\alpha(J^* - \overline{\lambda}) = \beta(J^* - \overline{\lambda})$ we then have $\alpha(J^* - \overline{\lambda}) > 0$. Clearly, $\alpha(J^* - \overline{\lambda}) < \infty$, since by assumption $J^* - \overline{\lambda} \in \sigma_{SF_+^-}(H)$ so that $\lambda \in E_0(J^*)$. Thus J^* satisfies property (ω) .

REFERENCES

- 1. Aiena. P and Monsalve. O, Operators which do not have the single values extension property, J. Math Anal., Appl 250 (2000), 435 448.
- 2. Aiena. P, Fredholm and Local spectral theory with applications to multipliers, Kluwer, 2004.
- 3. Aiena. P and P. Pena, Variations on Weyl's theorem, J. Math Anal., Appl 324 (1) (2006), 566 579.
- 4. Index of B fredholm operators and poles of the resolvent, J. Math Anal., Appl 272 (2002), 596 603.
- 5. L.A. Coburn, Weyl's theorem for non-normal operators, Michigan Math.J., 13(1966) 285-288.
- 6. Duggal, B. P, Jeon I. H, Kim I. H, On * paranormal contractions and properties for * class A operators, Linear Alg. Appl., 436 (2012) 954-962.
- 7. J.K. Finch, The single valued extension property on a banach space, pacific J. Math., 58(1975) 61-69.
- 8. T.Furuta, T.Yamazaki and M.Yanagida,On a conjecture related to furuta type inequalities with negative powers, Nihonkai Math.J., 9(1998) 213-218.
- 9.Ilmi Hoxha, Naim L Braha and Kotaro Tanahashi, on $Q(A(k^*), m)$ and absolute (K^*, m)
- m) paranormal operators, Hacettepe Journal of Mathematics and Statistics, Vol. 47., 6, (2018), 1564 1577.
- 10. A generalized Drazin Inverse, Glasgow Math.J., 38(1996) 367-381.
- 11. D.C.Lay Spectral Analysis using ascent, decent nullity and defect Math. Ann., 184(1970)197-214.
- 12. K.B. Laursen and M.M. Neumann, An introduction to local spectral theory, London mathematical society, Monographs New series 20, Clarendon Press, oxford 2000.

- 13. W.Y.Lee, S.H.Lee A spectral mapping theorem for the weyl spectrum, Glasgow, Math.J 38(1996) 61-64.
- 1. Department of Mathematics, PSG College of Technology, Coimbatore 641 004. E-mail: dkiruthi@gmail.com
- 2. Department of Mathematics, Sri Ramakrishna Engineering College, Coimbatore 641 022. E- mail: mathematics, Sri Ramakrishna Engineering College, Coimbatore 641